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ABSTRACT 
It is demonstrated  that the structured  coalescent  model  can  readily  be  extended  to  include  phenomena 

such as partial  selfing  and  background  selection  through  the  use of an  approximation  based  on  separa- 
tion of  time  scales. A model  that  includes  these  phenomena, as well as geographic  subdivision  and 
linkage  to a polymorphism  maintained either by local adaptation  or by balancing  selection, is derived, 
and  the  expected  coalescence  time  for a pair of genes is calculated. It is found  that  background  selection 
reduces  coalescence  times  within  subpopulations  and  allelic  classes,  leading  to a high degree of apparent 
differentiation.  Extremely  high  levels of subpopulation  differentiation  are also expected  for  regions of 
the  genome  surrounding  loci  important  in  local  adaptation.  These  regions will  be  wider  the stronger - - 
the  local  selection,  and  the  higher the selfing rate. 

N ATURAL selection on  the molecular level can be 
studied indirectly through its effects on variation 

at linked sites that  are  not themselves under selection 
(KREITMAN and AKASHI 1995). While it is possible to 
model  these effects in many different ways, the theory 
of gene genealogies, or coalescent theory, plays a partic- 
ularly important role because of  its close relationship 
with actual samples from populations (HUDSON 1990; 
DONNELLY and TAV& 1995).  In this context, the goal 
is to determine how  given  selective processes in  a  popu- 
lation are expected to effect a sample of sequences  from 
that  population. 

The  present article has two purposes. First, I wish to 
demonstrate  that  the  standard  structured coalescent, 
commonly used to  model  geographic subdivision and 
balancing selection, can easily be extended to include 
ostensibly complex phenomena such as partial selfing 
and background selection, through  the use  of an ap- 
proximation based on separation of time scales.  Sec- 
ond, to exemplify the  approach,  I show  how the ex- 
pected coalescence time for  a sample of  size two is af- 
fected by a  combination of background and various 
forms of balancing selection in  a geographically subdi- 
vided, partially selfing population. This quantity is of 
interest because of its direct  relationship with com- 
monly used measures of population variability. 

The article has the following structure. In the first 
section,  I use the classical  two-deme model to exemplify 
the  methods used in the  remainder of the article and 
to remind  the  reader  that models of geographic subdivi- 
sion can also be used to model  the subdivision into 
allelic  classes that occurs when selection maintains more 
than  one allele at a locus. Results for these models 

and Evolution, University of Chicago, 1101 E. 57th St., Chicago, IL 
Corresponding author: Magnus  Nordborg,  Department of Ecology 

60637-1573. E-mail: magnus@daMTin.uchicago.edu 

Genetics 146: 1501-1514 (August, 1997) 

are provided mainly for ease of comparisons with later 
results; the only new result in this section is the  demon- 
stration  that  the previously derived expression for  the 
reduction in variability expected under background se- 
lection (HUDSON and -LAN 1995; NORDBORG et al. 
1996a) can be obtained from the simple two-deme 
model. 

In  the second section, I examine how background 
selection interacts with balancing selection or geo- 
graphic subdivision. I also show  how balancing selection 
can interact with geographic subdivision in different 
ways depending  on whether  the polymorphism is main- 
tained by local adaptation ( i e . ,  in a  cline) or not. The 
latter  model has been  studied previously (KAPLAN et al. 
1991), whereas the  former results are new. The third 
section introduces selfing. It has recently been shown 
that  the coalescent process can be extended to incorpo- 
rate partial selfing quite easily (NORDBORG and DON- 
NELLY 1997).  These results are used here to extend  the 
simple models of  the first section to include selfing 
populations. In  the  fourth section the results of the 
preceding  three sections are combined to yield a  gen- 
eral model. 

MIGRATION OR SELECTION 

Imagine  a  standard Wright-Fisher population com- 
posed of N diploid individuals, so that  there  are 2N 
copies of each  gene. It is assumed throughout  that N 
is large. The population is subdivided into two classes 
(.g., subpopulations) of sizes Nl = Nc, and N2 = NG, 
respectively, where cl + = 1. Each of the 2N genes 
can be characterized as belonging to the first or the 
second class. Let 6 ,  i, j = 1, 2 be the probability that  a 
given gene  belonged to class j in  the previous genera- 
tion given that it belongs to class i in the  current genera- 
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tion. All parameters are assumed to be  constant over 
time. 

The genealogy of a pair of  selectively neutral genes 
sampled from this population  (in this context, “gene” 
simply refers to a nonrecombining piece of DNA) can 
be described by a discrete-time Markov process with  five 
states: (1, 0 ) ,  ( 2 ,  0 ) ,  (1, l ) ,  (0 ,  2),and (0, l),  where (k, 
I )  denotes  the state with k distinct genes in the first 
class, and 1 distinct genes in the second class. The two 
genes are “distinct” until  their most recent  common 
ancestor has been  found. Since a common ancestor will 
be  found eventually, the five states ma), be  partitioned 

into two equivalence classes: I = ( ( 2 ,  0 ) ,  (1, l) ,  (0,2)),  
which is transient; and ‘8 = [(l, 0 ) ,  (0, l ) } ,  which is 
recurrent. 

This process is  usually  analyzed by assuming that all 
relevant parameters scale  with N as N +  a. Formally, it 
is assumed that  the finite limit 

lim 2Nbq = B,, i, j = 1, 2 (1) 

exists. Under this assumption, we ignore terms smaller 
than 0(1/N), define bq = B,/ (2N) ,  and work  with the 
process given by the approximate transition matrix 
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where the states arranged in the  order (1, 0 ) ,  ( 2 ,  0 ) ,  
(1, I ) ,  (0, 2 ) ,  and (0, 1). 

The primary significance of assumption (1) is not 
that it ensures that  the b, are small enough for quadratic 
terms to be ignored  (although this is convenient),  but 
that it ensures that jumps between the two classes occur 
on the same time scale  as coalescent events.  Specifically, 
the  expected times between coalescence events and 
jumps  are  both of O(N). This fact is used as follows. 
Assume that  the process is in ( 2 ,  0 ) ,  for example. Let 
T2,o be the  random  amount of time spent  in this state 
before the process jumps  to  another state. From the 
transition matrix ( 2 )  we have 

If we measure time in units of 2N generations and let 
N +  M, we obtain 

lim P(T2.o > [2Nt ] )  = lim 
W m  Nya 

In other words, T2,0 has an exponential distribution with 
parameter 2BI2 + l / c l  in the limit. It is also easy to 
see from the transition matrix what happens  once  the 

process does jump. For example, the process jumps 
from ( 2 ,  0 )  to (1, 1) with probability 

otherwise it jumps to (1, 0). The  other states  behave 
analogously, and  thus  the discrete-time Markov  process 
with transition matrix (2) converges to a continuous- 
time Markov process where transitions occur as just de- 
scribed. This new, approximate process is generally sim- 
pler  to analyze than  the original, discrete-time process. 

In  the  present article, I will also  use an alternative 
continuous-time approximation to the exact process. 
Specifically, I will use the limiting process as N -+ 

without making assumption (1) .  This does not imply that 
the b, are large per se, only that they are large relative 
to O(l/N). It does imply that  jumps between the two 
classes are much more probable than coalescent events, 
so that in the O(N) generations that  are expected to 
elapse before a coalescent event occurs, a very large 
number of these jumps will have taken place. Con- 
versely, in the relatively  small number of generations 
expected to elapse before a jump between classes  oc- 
curs, a coalescent event is extremely unlikely to have 
taken place. The consequence of this is that  the original 
process separates into two different processes that occur 
on different time scales. Transitions from 1 to B ( i . e . ,  
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coalescent events) occur slowly on a time scale that is 
O(N), whereas transitions within . I  or 8 occur on a 
much faster time scale, Thus, if  we scale  time in units 
of O(N) and  let N -+ w, the individual states in : -I and 
B will be  instantaneous, so that  the process will look 
like an  unstructured coalescent process. The rate of this 
new process, Le., the rate of jumps from I J to 8, is 
determined by the stationary distribution of the fast 
process governing transitions within . -1. 

The stationary distribution for two genes can be 
found directly from the transition matrix governing 
transitions within . I, but  the following argument is 
more illuminating. It is easy to see that  a single gene 
will be in the first  class  with stationary probability &,I/ 

( bI2 + bl) and in the second with stationary probability 
bI2/ ( b12 + &) . Since the two genes are  independent  (to 
a very good approximation  for large N) the stationary 
probabilities for  the states in I I can be  found by multi- 
plying the stationary probabilities for each gene. Coales- 
cent events (i.e., jumps to 8) can only occur when both 
genes are in the same class. When both genes are in 
class i, jumps occur  at rate l /ci  per 2N generations. 
Thus  the coalescence rate of the new process is 

A =  61 1, bL 1 
(bl2 + b 2 d 2  CI ( 4 2  + 6 2 J 2  .2 

(612c1 - b;rlc2)2 = 1 +  (6) 
(bl2 + b1)2clc2 

per 2N generations. 
Alternatively, we can scale time in units of 2N/A gen- 

erations and retrieve the usual coalescent. Since A 2 
1, it is clear that coalescent events  in the  structured 
coalescent with  fast transitions occur at a rate that is 
greater  than  or  equal to  the rate  for  the  unstructured 
model, with equality if and only if bI2c1 = a condi- 
tion to which we will return shortly. Note that  the above 
argument works without modification if one of the bEI 
should be 0(1/N) or smaller, in which  case Equation 
6 still holds with the transition probability in question 
set to zero. In what  follows, we will refer to jump pro- 
cesses that obey assumption (1) as slow and those that 
do  not as fast. 

It should be strongly emphasized that  the  separation 
of time scales  is not restricted to  a sample of size 2. As 
long as the sample size  is much smaller than N, any 
subdivision into classes connected by a fast process re- 
sults in a process that behaves  like the  standard,  un- 
structured coalescent on a  different time scale. 

We  now derive the  expected coalescence time for two 
genes. This quantity is directly proportional to several 
painvise measures of population variability (HUDSON 
199O), e.g., NEI'S nucleotide diversity 7r (NEI 1987) un- 
der the infinite-sites model. If jumps between classes 
are slow, the  expected coalescence time for  a pair of 
genes depends  on  the initial configuration: (2 ,  0 ) ,  (1, 
l ) ,  or (0, 2) .  Let nQ, I E I be the coalescent time for 

two genes currently in state 1. The expectations can be 
found by conditioning  on  the first event and utilizing 
the Markov property to obtain  a set of linear equations, 
i.e., 

E n Q  = E(time till process first  leaves I )  

+ E,, P(jump  from 1 to m)ET[m], (7) 

or 

which is readily  solved to yield 

ET[(2, 0)] 1 - - + A' ( 3 4  + @)B&c, * Q(2* + B12 + & I )  ' 

A2 1 
Q B12 + &I 

ET[(l, l)] = 1 - - + 

where A = BI2c1 - @ = Brlcl - BIZ%, and @ = 
&cl + GIs. The expected coalescence time for a run- 
dom sample of two alleles, ET, is obtained by condition- 
ing on  the sample configuration, i.e., 

ET = P(initia1 state is I)ET(I)= ~ f E n ( 2 ,  0)] 
1E I 

A2 
Q' 

+ 2CIc2ET[(l, l ) ]  + .&Tl(O, 2)]= 1 - - 

+ 2ClC2 + 2 n ( 3 A  + @ ) B I Z & I C I C ~  
BIZ + &I Q(B1, + &1)(2* + Bl, + &I) 

With  fast jumps between  classes, the initial sample 
configuration is irrelevant because jumps between the 
three possible states are instantaneous on  the coales- 
cent time scale. ET is obtained immediately as the in- 
verse  of the rate parameter A given by (6), i e . ,  

where 6 = b12c1 - and t) = &c, + &Q. 
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These results are  interesting for several reasons. First, 
we are again reminded of the fact that fast jumps be- 
tween  classes result in a process that behaves  like the 
standard,  unstructured coalescent on a faster time scale, 
so that ET 5 1 unless 6 = 0. Second, for  the slow process 
we note  that  the term A2/Q in (10) is independent of 
the scaling of the By This implies that A2/Q = S2/$, 
the  corresponding term in (ll), and thus, since the 
remaining terms in (10) are all O(l/BV) or smaller, ET 
for the slow process converges to ETfor the fast process 
as the Bq become large. At least in this sense, the two 
approximations seem to overlap smoothly. Third, when 
the By are small, the  third term in (lo), which is positive, 
will dominate  the expression. It  therefore seems as 
though two different forces are affecting ET: one that 
increases and  one  that decreases the expected coales- 
cence time. The  former, which can be very strong, is 
effective  only  when the rate of exchange between  classes 
is small  relative to 1/N, the latter only  when 6 f 0. 

Migration: The above results are  perhaps easiest to 
understand when applied to a simple model of  geo- 
graphic subdivision. Imagine, therefore, a model with 
two subpopulations of  size clNand %N. The transition 
probabilities by, i, j = 1, 2 then  correspond  to  the back- 
ward migration rates ( k ,  the probability that a given 
gene is an  immigrant). 

When we interpret  the  structured coalescent model 
above as a model of geographic subdivision, the  central 
role played by the quantity 6 becomes obvious. We have 
6 = 0 if and only if 

b12C1 = hC2, (12) 

in other words when the  number of immigrants is the 
same in both subpopulations. Since an immigrant in 
one population is an  emigrant from the  other, this is 
equivalent to saying that immigration equals emigration 
in each subpopulation, so that migration does  not affect 
subpopulation sizes. NAGW (1980) refers to systems 
of migration with  this property as conservative and has 
shown that, in the strong-migration limit, the effect of 
nonconservative migration on identity coefficients can 
be described as a decrease in effective population size. 
The fast-migration result (6) is a special case  of  his 
result. In  the  remainder of this article, I will extend  the 
use of the term conservative to describe cases where 
(12) holds even  if  subdivision is not geographic. 

We note  that  the effect of nonconservative migration 
in reducing genetic variability is not limited to fast  mi- 
gration. Figure l illustrates this by plotting ET against 
cl/% and  the scaled forward migration rate,  here as- 
sumed to be  the same in both directions. It is clear that 
when the  number of migrants is small, ET is sharply 
increased relative to its neutral value  of one, whereas 
for large numbers of migrants, ET is smaller than one 
(except when cI/c2 = 1, which  implies  conservative  mi- 
gration).  The negative effect is stronger  the  more asym- 
metric the migration. 

Most coalescent models of geographic subdivision 
have assumed conservative (and often symmetric) mi- 
gration (TAKAHATA 1988; HUDSON 1990; HEY 1991; 
HERBOTS 1994). Exceptions include the work of TAJIMA 
(1989) and of NOTOHARA (1990, 1993a,b), who  also 
looked at  the case  of  fast migration. The results of this 
section agree with those of the  latter two authors. 
As shown in the APPENDIX, the expressions for  the 

expected coalescence times under slow migration sim- 
plify considerably if migration is assumed to be conser- 
vative. They have a particularly simple form when the 
subpopulations are of equal size ( i e . ,  c1 = q = 1/2) so 
that  the model is completely symmetric. In this  case, 
we have a single migration parameter m = bI2 = bl. It 
is  easy to show that En(2 ,  O)] = ET[(O, 2)] = 1, 

En(1 ,  l)] = 1 + - (13) 
1 

2M ’ 

and 

1 
4M ’ 

ET= 1 + - 

where M is the scaled migration rate 2Nm (SLATKIN 
1987; STROBECK 1987; TAKAHATA 1988; TAJIMA 1989a; 
HUDSON 1990; HEY 1991; NOTOHARA 1993a; HERBOTS 
1994). 

For future  reference, we note  that WRIGHT’S fixation 
index, Fsn can be calculated approximately from the 
painvise coalescence times  as 

where Eqw] is the average  of the  expected coalescence 
times for pairs of genes sampled within a subpopulation 
(SLATKIN 1991; HERBOTS 1994). For the symmetric 
model, where Eqw] = (En(2, O ) ]  + En(0 ,  2)1)/2, 
we thus have 

1 
1 + 4M’ 

F,,. = - 

in agreement with earlier results  (WRIGHT 1951; NEI 
1975; TAKAHATA 1983; CROW and AOKI 1984; SLATKIN 
1991; HERBOTS 1994). Note that this result differs from 
the classical result FST = 1/  (1 + 4Nm) because the num- 
ber of demes here is  two rather  than infinite. 

General selection  model: Imagine a single popula- 
tion in which a two-allele polymorphism with  alleles A I  
and A2 has been maintained for a long time by some 
combination of selection and mutation (e.g., heterozy- 
gote advantage or mutation-selection balance) at fre- 
quencies p and q = 1 - p.  Let uti be  the  mutation rate 
from A, to A,. The forces maintaining the polymorphism 
are assumed to be strong relative to random drift, so 
that p and q can be treated as constant to the relevant 
order of approximation. We are interested in the coales- 
cent process at a neutral locus linked to the locus under 
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1. 

ET 

0 

migration 

selection, with recombination  rate r. With respect  to 
this locus, the population can be subdivided into two 
allelic classes, because a given gene is linked either  to 
an A ,  or an A2 allele. We can thus use the same model 
as for migration with q = p ,  cz = q, and transition 
probabilities given by 

q(*1 + P) 
P 

P(u12 + gr) 

b12 = (17) 

b 2 1  = , (18) 

to linear order in the recombination and mutation 
rates, as  well as in  the selection coefficients (HUDSON 
and KAPLAN 1988; KAPLAN et dl. 1988; HEY  1991). 

Balancing  selection: We first look at  the case of  bal- 
ancing selection (HUDSON  and WLAN 1988; KAIJLAN 
et al. 1988; HEY  1991). Note that if uii Q r, we have bI2 
= gr and = p. Since the mutation rate from one 
functional allele to  another is  likely to  be extremely 
low,  this will be  true  except  for sites that  are very  tightly 
linked to  the balanced polymorphism. 

Assume first, therefore,  that  mutation is negligible. 
Under this assumption, 6 = 0, because recombination, 
as it is modeled  here, is  by itself always conservative in 
the sense of (12). If ris large, so that  the fast approxima- 
tion is appropriate, we thus  see immediately from (6) 
and  the accompanying argument  that  the  balanced 
polymorphism has no effect (to  the assumed order of 
approximation)  on  the coalescence process. If r is 
O( 1 /A'), we define 

4 

lim 2Nr = (19) 

and obtain  the  expected coalescence times precisely as 
for  the case  of geographic subdivision (the results are 
given in the APPENDIX). If the balancing selection is 
symmetric, so that p = q = we have En (2, 0) ] = 
E q ( 0 ,  2)] = 1, E n ( 1 ,   l ) ]  = 1 + l/R and 

I\+ 

FIGURE 1.-When  mi- 
gration is not conservative, 
Z.P., when (12) does  not 
hold,  population subdivi- 
sion can decrease as well 
as increase  coalescence 
times. The plot shows ET, 
given by ( lo) ,  as a func- 
tion of the ratio of the two 
subpopulation sizes and 
the scaled forward migra- 
tion rate, assumed  to be 
equal in both directions. 
The  plane  at ET= 1 repre- 
sents the  standard  neutral 
value and is included for 
comparison. 

1 
2R' 

E T = l + -  

which should  be  compared with the results for  the mi- 
gration  model  (HUDSON and KAPLAN 1988; KAPLAN et 
al. 1988; HEY  1991). 

If mutation is not negligible compared with recombi- 
nation,  there may be  a negative effect on  the coales- 
cence time that is not  due to linkage, but  to nonconser- 
vative  flow between the allelic classes. Numerical studies 
indicate  that this effect is negligible compared with the 
effect of linkage except when the b, are relatively large. 
For the biological reasons mentioned  at  the beginning 
of this section, however, the b, will never be large unless 
the u, are negligible compared with r. This negative 
effect should  therefore never be  important  under bal- 
ancing selection. 

Background  selection: Now assume that  the poly- 
morphism is maintained by mutation-selection balance 
instead of balancing selection. Let A ,  be  the wild-type 
allele and A2 the (class of) deleterious  ones, and define 
wI1 = 1, wI2 = 1 - t , ,  and y2 = 1 - ti, where the 
selection coefficients are assumed to be small  as before. 
The deleterious  mutation  rate, uI2 = u, is also assumed 
to  be small (although several orders of magnitude 
greater  than uI2 in the previous section),  and  the re- 
verse mutation  rate, is assumed to be negligible. To 
the  order of approximation, we thus have 

b12 = gr, 

Using the well-known mutation-selection equilibrium 
expression q u/t l  (HALDANE  1927), k1 may be a p  
proximated by p (  tl + r) ,  which  makes it clearer  that i t s  
first term is much  greater  than O( u) .  Now, to assume 
that p and q are constant, we must assume that Nu 9 
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1. This clearly implies that b1 %= O( l/N), so we must 
use the fast approximation. As we have seen ($ the 
argument accompanying Equation 6), this is tanta- 
mount to saying that  the effect of the selected locus on 
the coalescent at linked sites is equivalent to a  reduction 
in the effective population size. The resulting decrease 
in expected variability is known  as “background selec- 
tion” ( CHARLESWORTH et al. 1993). Using (1 1 ) we ob- 
tain directly, to linear order in q, r, and t l ,  

E T = l -  !I (23) 
(1 + -$’ 

which  is the result found by HUDSON and KAPLAN (1994, 
1995) using a related coalescent approach, and by 
NORDBORG et al. (1996a) using diffusion methods. 

For n loci in mutation-selection balance that  interact 
multiplicatively, it has been  argued  that 

where qj, ri, and tli are  the parameters defined above 
for each of the n loci; Monte Carlo simulations indicate 
that this approximation is quite good (HUDSON and 
KAPLAN 1995; NORDBORG et al. 1996a). We note  that  an 
induction  argument based on the single-locus result in 
this article also  suggests the approximation given by 
(24),  but that  the validity of the time-scales approxima- 
tion as the  number of  loci increases and  the frequency 
of chromosomes free of deleterious mutations de- 
creases remains to be determined. We  will return to 
this issue in DISCUSSION. 

For future use we define a as the ratio of ET under 
background selection to ET without background selec- 
tion. Since the  latter equals 1 when time is scaled in 
units of  2N, a is given by (24). Of course, (Y is equal to 
the 7r /7 ro  of CHARLESWORTH et al. (1993) and can also 
be interpreted as  NJN, where N,is the effective popula- 
tion size under background selection. 

MIGRATION AND SELECTION 

To investigate  how two different processes, such as 
migration and selection, jointly affect the coalescent, it 
is necessary to subdivide the population twice. Imagine, 
therefore,  a Wright-Fisher population of  size N diploid 
individuals, but this time divided into  four classes  of 
size  N,, i = 1, . . . , 4. As before,  let b,, i, j = 1, . . . , 4 
be the probability that  a given gene in class i was in 
class j in the previous generation. To describe the gene- 
alogy of a  pair of genes, we  now need  a minimum of 
11 states: the absorbing state plus (2, 0, 0, 0 ) ,  (1, 1, 0, 
O ) ,  (1, 0,  1, O ) ,  (1, 0,   0 ,  I) ,  (0 ,  2, 0,  O ) ,  (0 ,  1,  1, O ) ,  (0, 
1, 0 ,  l),  ( O , O ,  2, O ) ,  (0, 0,  1, 11, and (0 ,  0 ,  0 ,  2), where 
( k ,  I, m, n) denotes  the state with k distinct genes in the 
first  class, I distinct genes in the second class, etc. 

We are  interested only in the special  case of this 
model in which the  four different classes are defined 
by  two dichotomous criteria. For example, we  may have 
geographic subdivision into two subpopulations com- 
bined with “genetic subdivision” into two allelic  classes 
(Figure 2) .  This restriction imposes two constraints on 
the  general model. First, the size  of each class can be 
found by multiplying the sizes of its  class  with respect 
to the two levels  of  subdivision (e.g., Nl = clpNin Figure 
2) .  Second, the probabilities of exchange between 
classes separated by two levels of subdivision (ie., b14, b41, 

&3, and 6 3 2 )  will be smaller than  the  other probabilities. 
Three different combinations of  time  scales are of 

interest. First, if the probabilities of exchange between 
the classes are  O(l/N)  on both levels (Le . ,  horizontally 
and vertically in Figure 2), we obtain an approximate 
process of the same dimensionality, analogous to the 
slow approximation described above. Second, if the 
rates of exchange are all high,  the process reduces to 
a  singledimensional  one, analogous to the fast approxi- 
mation. As before, this single-dimensional process will 
be  the usual coalescent on a different time  scale. All 
that is needed to understand this process is thus de- 
termining  the  correct time scale  (which may sometimes 
be algebraically difficult). 

The third possibility is that flow across one level  of 
subdivision is fast, whereas flow  across the  other is slow. 
This case can be analyzed using an obvious extension 
of the previously  given arguments. Assume (without loss 
of generality) that  jumps between 1 and 2, and 3  and 
4  (horizontal flow in Figure 2) occur  at  a high rate, 
whereas all other  jumps  occur with probability O(l/N) 
or less. Then  a very large number of horizontal jumps 
will occur before any  vertical jumps  occur, and, on  a 
continuous time scale  with  time measured in units of 
O(N) , vertical jumps will occur according to the station- 
ary states of three possible “horizontal” equivalence 
classes,  namely 

I = ((2,  0,  0, O ) ,  (1, 1, 0, O ) ,  (0, 2, 0,  O ) ) ,  

B = ((1, 0, 1, O ) ,  (1 ,0,0,  l),  (0, 1, 1, O ) ,  (0, 1 ,0 ,  l)],  

C = ((0,  0, 2, 0 ) ,  (0, 0, 1, l),  (0 ,  0, 0, 2)],  (25) 

which  of course correspond to the states (2, 0 ) ,  (1, 1) 
and, (0, 2), respectively, for the vertical  process. Jumps 
between  these  states (as well as coalescent  events)  occur 
according to an exponential process on  a time  scale  of 
O(N), as usual.  It can be  shown that this  process  has a 
transition  matrix that looks  identical  to the transition  ma- 
trix (2), except that By, i, j = l, 2 is replaced by l$, where 

b12 B12 = ___ (B23 + B24) + - ” (B13 + B14), (26) 

m l  + ~ 3 ~ ) ~  (27) 

biz + b~ 612 + b 2 1  

b34 & =- (B41 + B42) + ~ 

643 

634 + 643  b34 + b43 
and ci, i = 1, 2 is replaced by C,, where 
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FIGURE 2.-Examples  of  models  with two levels  of  subdivision. The values  on  the  arrows  are biic,, i e . ,  they are  proportional to 

the  total  number of immigrants;  the  parameters  are  defined  in  the  text.  From  left  to  right,  the  models  are as follows:  migration 
and  background  selection,  migration  and  balancing  selection  without  local  adaptation,  and,  finally,  migration  and  balancing 
selection  with  local adaptation. 

Since the real subpopulation sizes for  the slow,  vertical 
process are cl + q and c3 + c4, it is clear that the fast, 
horizontal process will act to reduce these unless the 
fast flow  is conservative. Coalescent events may there- 
fore  occur  at  a faster rate within each  subpopulation. 
It does not seem possible to say anything equally general 
about  the effect of the fast process on  the Bi, making 
the effect on the total coalescence time hard  to predict. 

General  selection-migration  model: We begin by 
combining the models of geographic subdivision and 

P,m 
P, 

0 

selection introduced above. Let pi( qJ be  the frequency 
of A,(A2) in  subpopulation i. The mutation rates are 
assumed to be the same in  the two subpopulations,  but 
the selection coefficients may differ (which may lead to 
differences in allele frequencies between the  subpopu- 
lations). For clarity, we restrict our  attention  to  the case 
of  conservative symmetric migration (Le., equal subpop 
ulation sizes and a single migration rate m) . The critical 
parameters  are  the bi, ofwhich  there are now 16 (rather 
than the two needed  for  one level  of structure). They 
can be found  through  standard  population genetics 
theory, but  are of course quite complicated in their 
exact form, and  depend on the details of the life  cycle 
assumed. However, using the same approximations as 
before, it can be shown that, to linear order in migra- 
tion, selection, recombination, and mutation,  the b, are 
the  elements of the matrix 

0 
Pl 

0 _. 42m 
Q1 

Migration  and  background selection: First assume at equilibrium must be  equal, as depicted  in  the left 
that  the polymorphism is maintained by mutation-selec- panel of Figure 2. Thus, we have p, = P, = p and q1 = 
tion balance with parameters as in the previous section. 42 = q in  the matrix (30). 
The deleterious  mutations are assumed to act  identi- As we have seen,  background selection must be mod- 
cally in  both  subpopulations, so the allele frequencies eled using the fast approximation. Assume that m is 
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O( 1/N), so that we have the  combined fast-slow process 
we just described. It is obvious that C, = 4 and BIZ = 
& because of symmetry. This observation alone gives 
us En(2 ,  O)] = ET[(O, 2)] = 22, and 

where the states ( k ,  I )  refer to the geographic subdivi- 
sion. Since the modified subpopulations are of equal 
size, we also  have 

1 
ET = 2 4  + 7 

4 4  

It is  easy to show that 

and that 

8v = M,  i, j = 1, 2, (34) 

where M, as before, is the scaled migration rate 2Nm. 
To the  order of approximation,  background selection 
affects only the effective subpopulation sizes, not migra- 
tion between subpopulations. 

Generalizing to multiple loci in mutation-selection 
balance, we have Enw] a,  and 

1 
4M ’ 

E T ~ c Y + -  (35 )  

where a is  still  given by (24). As a  consequence,  the 
relative amount of time spent between subpopulations 
is increased, so that 

1 
1 + 4Ma 

FS, M 

Background selection thus leads to an  apparent in- 
crease in  population  differentiation, as conjectured by 
HUDSON and KAPLAN (1995). For completeness, we 
note  that  the case  of high migration is trivial (just let 
M -+ 00 in all expressions). 

Balancing selection and  background selection: Imag- 
ine  that  the locus under study is linked to a balanced 
polymorphism on  one side with recombination  rate r 
and to a locus in  mutation selection balance on the 
other side with recombination  rate 7‘. It is  easy to see 
that, under  the assumptions used throughout this paper 
(notably the assumption that  double  recombination 
events are  negligible), this model is identical to  the 
one of the previous section if  we replace population 
subdivision  with balancing selection. If the allele fre- 
quencies for  the balanced polymorphism are  equal,  for 
example, we have 

E T = 1 -  + -  1 
( 1  + 7‘/t1)‘ 2R’  (37) 

and  for  the case  of multiple loci in mutation selection 
balance, we would  have 

1 
2R ’ 

E T = a + -  

as conjectured by NORDBORC et al. (1996b). 
Migration  and  local  adaptation: We  now return to 

the  general  model of migration and selection and as- 
sume that  the genetic polymorphism is maintained by 
some form of local adaptation instead of  by mutation- 
selection balance. To  the  order of approximation,  the 
resulting model is identical to the  more  general  model 
of balancing selection in  a subdivided population stud- 
ied by KAPLAN et al. (1991). These  authors  did  not, 
however, derive the results for  strong local adaptation 
that will be given  below. 

Assume that  the genetic polymorphism is maintained 
by local adaptation with negligible mutation between 
the two alleles. Directional selection favors AI over A2 
in the first subpopulation, and A2 over AI in  the  second. 
We  wish to contrast this situation with one in which the 
overall allele frequencies  are  the same, but  do  not differ 
between the  subpopulations (i .e. ,  there is some form 
of balancing selection without local adaptation, or the 
degree of local adaptation is  very weak). For simplicity, 
we will assume that  the overall allele frequencies  are 
equal, i.e., pl + pr = q1 + q2 = For this to be the 
case, the local adaptation must be symmetric so that PI 
= q2 = p and q1 = p, = q, as depicted  in  the  right  panel 
of Figure 2. Note that the case of  weak or  no local 
adaptation can be  obtained from this model simply by 
letting p = q = as depicted  in  the middle panel of 
Figure 2. 

Local adaptation is similar to background selection 
in many ways. Within each  subpopulation, polymor- 
phism is maintained by migration-selection balance, 
just as it is maintained by mutation-selection balance 
under background selection. If the migration rate is 
low,  we  will have q = m/ tl ,  where tl is the selection 
coefficient against heterozygotes (HALDANE 1930). 
Thus,  for  the allele frequencies p and q to be constant, 
we need to assume that m > O(l/N),  so that only the 
fast approximation  for migration is appropriate  [the 
case of  slow migration requires  a  different  argument 
(M. NORDBORG, unpublished data)]. No such restric- 
tion applies if the  genetic polymorphism is maintained 
by some other form of balancing selection, nor, obvi- 
ously, to the rate of recombination. 

If recombination and migration are  both slow (again, 
this case is not applicable when the polymorphism is 
maintained by strong local adaptation), we find  the 
expected coalescence time for each of the 10 possible 
initial states as before  (see APPENDIX). The mean coales- 
cence time within subpopulations is 

1 1 
E n w ,  subpopulation] = 1 + - + 

2R 4M + 2R’ . (39) 

that within  allelic  classes is 
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1 1 
E n w ,  allelic  class] = 1 + - + 

4M 4M+  2R' 

and that  for  a  random sample, finally, is 

1 1  1 
E T = l + - + - +  

4M 2R 4M+  2R' (41) 

If recombination and migration are  both fast, we use 
the fast-fast approximation. Because  of the high degree 
of  symmetry  in the transition matrix, it is possible to 
find the relevant effective population size  explicitly. It 
can be shown that 

Without local adaptation, p = q and ET = 1, whereas if 
local adaptation is strong we have m = qtl, q small, and 
(42) can be approximated by 

E T = 1 -  
(1  + r/tl)* ' (43) 

which is identical to (23). Thus, local adaptation speeds 
up the coalescent by decreasing Ne at sites linked to the 
selected locus, an effect analogous to  that of  back- 
ground selection. 

This is only true when ris of the same order of magni- 
tude as m, however. For closely linked sites, i.e., when 
r is O(l/N), we must use the fast-slow approximation 
instead. Note that, in terms of Figure 2, the vertical 
process is  now fast, and  the horizontal one slow, so the 
indices on the right-hand side of (26) - (29) must be 
changed in the  appropriate  manner. This done,  the 
expected coalescence times in terms of the Bi, and  are 
the same as for background selection and geographic 
subdivision. In  the  present case,  however, we have 

and 

(45) 

Thus, if there is no local adaptation, p = q = 1/2 and 
the  expected coalescence times are identical to those 
obtained  for balancing selection without geographic 
subdivision. Under  strong local adaptation ( i e . ,  q 
small), on the  other  hand, we have 

and 

1 
- q + - (47) 

2qR 

1 
4'-. (48) 

4qR 

Thus,  the effective  allelic  class  size is decreased by the 
migration-selection balance. The major effect of  local 
adaptation, however, is to reduce  the effective recombi- 
nation rate, because heterozygotes are  uncommon 
(KAPLAN et al. 1991). We note  that  the approximations 
given by (42)  -(43) and (48) are consistent with each 
other, because large Rin the  latter corresponds to small 
T in the  former, and the approximations converge to 

What about Fs, under this model? Because the rate 
of migration is assumed to be high, one might expect 
that FsT = 0. This is indeed  the case  when there is no 
local adaptation (p = q) and also when FST is measured 
within  allelic  classes. If FST is measured in the  normal 
fashion (i.e., without regard to allelic  classes),  however, 
we have 

1 - q. 

ET[ w, subpopulation] = PET[ (2, 0 )  ] + 2pqEn (1,  1 ) ] 

so that 

1 
1 + 4qR ' 

FST ~ 

where the approximations apply for small q, as before. 
Thus regions of the  genome close to polymorphic sites 
maintained by migration-selection balance may exhibit 
extremely high FST values  even though FST for unlinked 
sites is zero. 

INCORPORATING SELFING 

It has recently been shown that  the  standard coales- 
cent can be extended to incorporate partial selfing by 
simply keeping track of whether genes are in the same 
or different individuals and noting  that  the time spent 
in states involving two genes in the same individual is 
negligible on the coalescent time scale (NORDBORG and 
DONNELLY 1997). This is another example of separation 
of time scales in the coalescent process. The effect of 
the mating system  is  simply to reduce  the effective popu- 
lation size to 
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where s is the fraction of offspring produced by self- 
fertilization, i e . ,  the selfing rate. This result is in agree- 
ment with the classical result (LI 1955; WRIGHT 1969; 
POLLAK 1987), often written 

1 
l + F  

N, = - N, 

where F = s/ (2 - s) is the equilibrium  inbreeding coef- 
ficient for a  neutral locus (HALDANE 1924). In  the re- 
mainder of  this section, I will use this insight to show 
how partial selfing affects models of migration or selec- 
tion. 

Selfing  and  migration: This case is straightforward. 
The time until the ancestors of two genes in different 
subpopulation  are  found  in  the same subpopulation is 
unaffected, but  the  rate  at which two genes in  the same 
subpopulation coalesce is increased by a factor 1 + F, 
as  we just have seen. For the completely symmetric two- 
deme  model, we have ET[  w] = 1/ (1 + r;) and 

1 1 
l + F  4M 

E T = - + - .  

Clearly, 

(53) 

(54) 

Selfing will thus always increase FS,. Note the analogy 
between the effects of background selection and selfing: 
both act to decrease N, and therefore affect the coales- 
cence times in  the same way. Note also that if migration 
occurs via pollen flow, the migration rate would of 
course be directly affected by the  degree of selfing. This 
is not  the case for diploid migration. 

General selection  model with selfing: If extending 
the  model of geographic subdivision to  incorporate 
selfing is trivial, extending  the  model of subdivision 
into allelic classes  is considerably less so. The reason 
for this  is that whereas migration is assumed indepen- 
dent of genotype, recombination is not, because it can 
only  take place in heterozygotes. This is, of course,  true 
with random  mating as  well, but does not cause a  prob- 
lem because, under  random mating, the probability 
that  the  parent of a given gene was a heterozygote does 
not  depend  on  the genotype of the individual in which 
the  gene resides in the  current generation. With selfing, 
this is obviously not  true,  and we therefore  need to 
divide the  population into genotypic as  well  as allelic 
classes. For example,  a  gene  in  the first allelic  class (it?., 
linked to an AI allele) is either in the AlAl or the AIA2 
genotypic class. Since, under partial selfing, we also 
need to keep track of whether two genes are in the 
same individual or not, 13 states (plus  the trivial  ab- 

sorbing  state)  are  needed  to  model  the genealogy of a 
pair of genes as a discrete-time Markov process. This 
should  be  compared with three states under  random 
mating. 

Fortunately, it is possible to completely eliminate 
these extra dimensions by appealing  to  separation of 
time scales. As before, coalescent events occur  on  a time 
scale that is O(N), and  jumps between the allelic  classes 
(ie., recombination and  mutation) occur on a time 
scale that is either O(N) or much faster. What about 
jumps between the genotypic classes? These  are caused 
by Mendelian segregation and occur with  very high 
probability per  generation. We thus  introduce  a  third 
time scale to describe these jumps,  and simply argue 
that  the process will have reached stationarity with re- 
spect to the genotypes long  before any other  jumps 
(due to recombination,  mutation, or coalescence) take 
place. Let x, y, and z be the  equilibrium  frequencies  of 
the  three genotypes AIAI ,  AIA2, and A2A2, respectively. 
These  frequencies will be constant to the assumed order 
of approximation. The stationary probability that  a 
gene linked to an A, allele is in a heterozygote is y/ 
(2x + y), otherwise it is in a homozygote ( A I A , ) .  The 
analogous probability for  a  gene in the second allelic 
class  is  of course y/(2z + y). Using these stationary 
probabilities, and  the same approximations as for ran- 
dom  mating,  the transition probabilities governing 
jumps between allelic classes can be  shown to be 

where 7 = (1 - f i r .  These  equations  should be com- 
pared with (17) - (18). Selfing always affects the b, by 
reducing  the effective recombination  rate, and possibly 
also by altering  the  equilibrium values of p and q. 

Selfing  and  balancing  selection: Given this result, the 
case of balancing selection is simple. As before, we ig- 
nore  mutation.  Jumps between allelic  classes occur as 
before,  but  at a rate  that is reduced by a  factor 1 - F. 
Coalescence events within  allelic  classes occur at a  rate 
that is increased by a factor 1 + F. The results obtained 
for random  mating  hold with straightforward modifica- 
tions. For example, in the case p = q = we have 
E n w ,  allelic  class] = 1/(1 + 4, and 

1 1 
1 + F  2R'  

E T =  - + -- (57) 

where R = (1 - r;) R, as conjectured by NORDBORC et 
al. (1996b). 

Selfing  and  background  selection: The case of back- 
ground selection is also straightforward. A gene is in 
the class  of deleterious alleles with stationary probability 
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q p  
P 
4 

f 

? + - U  

otherwise it is in the class  of  wild-type alleles (; .e. ,  A I ) .  
Coalescent events occur within these two  classes  with 
rates (1 + f l / q  and (1 + q / p ,  respectively. Define 2 = 
(1 - t) tl + Fk. Under  the assumption that  the deleteri- 
ous allele is rare (6 HALDANE 1927), we then  obtain q 
M u/f directly from  the genotypic recursions. Using this 
and  the same approximations as before, it is  easy to 
show that 

This expression should  be  compared with (23). 
Analogously to the case  of random  mating, we conjec- 

ture  that the effect of ?z loci in mutation-selection bal- 
ance can be approximated by 

and redefine a to be NJN, where N, is the effective 
population size under background selection and selfing 
(given directly by Equation 60; $ the discussion follow- 
ing  Equation 24). 

MIGRATION,  SELECTION, AND  SELFING 

This section illustrates how  all the forces discussed 
in this paper act in  combination, by extending  the 
model of balancing selection in  a subdivided popula- 
tion to include partial selfing and background selec- 
tion. The results for  the simpler models can be recov- 
ered as special cases. 

No local adaptation: We first look at  the case  of a 
balanced polymorphism maintained by symmetric se- 
lection acting  independently of population subdivision 
($ Figure 2, middle panel). 

As we have seen,  background selection and selfing 
act to reduce  the  expected coalescence time within s u b  
populations and allelic classes. Selfing decreases the 
rate of exchange between allelic  class by a  factor 1 - 
F, and  neither process affects migration. Equations 39- 
41 thus  become 

1 1 
ET[w, subpopulation] = a + 7 + 

2R 4 M +   2 R ’  (61) 

and 

ET[w, allelic class] = a + - + 1 1 

4M  4M+ 2 R ’  (62) 

1 1  1 E T = a + - + - +  
4M 2R 4 M +   2 R ’  (63) 

The results for fast migration or recombination can 
be obtained by letting  the relevant parameter go to 
infinity. 

It is  easy to show that Fv equals 1/( 1 + 4Ma) for 
unlinked loci but is affected by R otherwise. The FST 
statistic can also be used to with respect to the allelic 
classes  as 

ET - E q w ,  allelic  class] 
ET 2 (64) 

in which  case it, loosely speaking, measures the fraction 
of the total variability that is due to the division into 
allelic  classes. For high migration, this measure equals 
1/(1 + 2aZ?), which  shows that balancing selection has 
much  greater effect on variability in the  presence of 
selfing and background selection (NORDBORG et al. 
1996b). 

Local adaptation: The local adaptation  model ($ 
Figure 2, right  panel) can be treated similarly. For sites 
that  are tightly linked to the selected locus, E n w ,  allelic 
class] = a ( l  - q) ,  

1 
R ’  

E n  w, subpopulation] = a (1 - q) + X (65) 

and 

In this case, FS, is approximately equal to 

regardless of whether it  is measured with respect to 
subpopulations or allelic  classes (this is so because al- 
leles are so strongly correlated with subpopulation). 
Since recombination is weighted by a factor 4 p (  1 - 
a, which may be very small, it is clear that high Fv 
values may be expected even for loosely linked sites. 

DISCUSSION 

This article has demonstrated how arguments based 
on a separation-of-time-scales approximation can be 
used to include  phenomena such as partial selfing and 
background selection in the general theoretical frame- 
work  of the  structured coalescent. Not only is it  possible 
to model these phenomena in isolation, it is also  possi- 
ble to combine several models into  one  for  greater bio- 
logical  realism without sacrificing any of the advantages 
of coalescent modeling  (such as suitability for  computer 
simulations). As an example, I calculated the  expected 
coalescence time for two genes in a  model  that includes 
background selection, partial selfing, geographic subdi- 
vision, and linkage to a balanced polymorphism main- 
tained  either by local adaptation or by balancing selec- 
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tion. Below, I discuss the main results and their implica- 
tions. 

Fast processes and Ne: The central  point of  this arti- 
cle is that any process that effectively  subdivides the 
population  into  a  number of  classes connected by fast 
flows ( i e . ,  transition probabilities much  greater  than 
0(1/N) per generation) can be modeled simply as a 
change in Ne. This result is not limited to a sample size 
of  two. Examples include geographic subdivision  with 
high migration rates, background selection, and partial 
selfing. Arguments based on separation of time  scales 
in the coalescent have been used before (KAPLAN et al. 
1991;  TAKAHATA 1991),  but  not  presented as a  general 
approach. 

Because the  concept of Ne is perhaps  more commonly 
used than  understood,  it is worth belaboring what  this 
result means. By saying that  a certain population struc- 
ture can be  modeled as a  change in Ne, I mean that  an 
appropriate  change in the coalescent time scale will 
retrieve the equivalent unstructured coalescent process, 
allowing standard analytical results and software to be 
used (DONNELLY and  TAVAR~ 1995; NORDBORG and 
DONNELLY 1997). This claim is much  stronger  than, for 
instance, the  statement  that  the  expected coalescence time 
for  a sample under a certain model of population struc- 
ture is equivalent to that of an  unstructured  population 
of some effective  size (NEI  and TAKAHATA 1993). 

Nonconservative  migration: When the flow  in a 
structured coalescent is nonconservative, expected co- 
alescence times may be decreased by subdivision  as well 
as increased (cf :  Figure 1). Indeed, if the flow  is fast, 
the  expected coalescence time will  always be reduced, 
an effect equivalent to a decrease in Ne (NAGW 1980; 
NOTOHARA 1993a). 

It is  easy to see why population  structure can increase 
the total coalescence time, because two genes in differ- 
ent subpopulations cannot coalesce until a migration 
event brings them to the same subpopulation,  but what 
is the  intuition  behind  the decreased coalescence time 
under non-conservative migration? When (12) does not 
hold,  there is a net gene flow from one  subpopulation 
to the  other. Looking forward in time, a  parent in the 
“upwind” (net  donor) subpopulation is more likely to 
leave offspring than  a  parent in the “downwind” (net 
recipient)  subpopulation. Looking backward in time, 
the ancestor of a  gene in the downwind population is 
more likely to have  lived  upwind than  the  other way 
around. Clearly  this may cause a  reduction in N,, and, 
therefore,  shorter  expected coalescence times. 

In  the real world, we would often expect migration 
to be nonconservative, however,  most theoretical analy- 
ses  of subdivided populations have assumed the sim- 
plest version  of the finite island model, in which  migra- 
tion is both symmetric and conservative. The results 
from this model are widely used and  quoted, yet their 
robustness to violations  of these basic assumptions do 
not seem to have been investigated. 

Background  selection: As we have seen, background 
selection can be interpreted as a  form of nonconserva- 
tive, fast migration. In this case the heuristic explana- 
tion just given  works  even better because “wind” is 
explicitly included in the model in the form of the 
(unidirectional) deleterious mutation rate. It  should 
thus be possible to model background selection simply 
as a  reduction in Ne, but this conclusion is contradicted 
by the negative  values  of  TAJIMA’S D statistic seen in 
simulations of this process (CHARLESWORTH et al. 1993, 
1995; HUDSON and -LAN 1995): if a  reduced Ne was 
the only effect of background selection, TAJIMA’S D 
should have a mean value  of zero (TAJIMA 1989b). 

This apparent contradiction is resolved by realizing 
that  the extension of the single-locus result to multiple 
loci is not rigorous. In particular, a  random sample 
from a  population will not be drawn according to the 
stationary distribution of the fast mutation-recombina- 
tion process. Under  the single-locus background selec- 
tion model, a randomly sampled gene will be linked to 
a deleterious mutation with probability q, whereas the 
stationary probability is b I 2 / ( b l 2  + bl) = q/ (1 + t l / r ) .  
This difference will disappear instantly on the coales- 
cence time  scale, and can thus be ignored. With  multi- 
ple loci,  however, it is possible that convergence to the 
stationary state could be slow enough to be detected, 
especially for large sample sizes and values of 8, which 
is precisely the circumstances under which significant 
negative  TAJIMA’S D have been observed (CHARLES- 
WORTH et al. 1995). 

There are  further inaccuracies associated  with the 
approximations for multilocus background selection. 
Monte Carlo simulations have  shown that whereas (60) 
is quite accurate for random mating (CHARLESWORTH 
et al. 1993; HUDSON and KAFTAN 1995), it is considerably 
less accurate for selfing populations (B. CHARLES 
WORTH, M. NORDBORG and D. CHARLESWORTH, unpub 
lished data).  Furthermore, simulation of models that 
include balancing selection (NORDBORG et al. 1996b) 
and migration (B. CHARLESWORTH, M. NORDBORG and 
D. CHARLESWORTH, unpublished data) indicate that  the 
statement  that background selection only  affects the 
coalescence time within  classes (e$ Equations 35 and 
38) is only correct to a  rough approximation for  strong 
background selection. 

Selfing: In contrast to the situation with background 
selection, extending coalescent models to incorporate 
partial selfing does not seem to pose  any  difficulties. 
Selfing  has two distinct effects, one  minor,  and  one 
major. The  minor one is that  the effective population 
size  is reduced directly by up to a factor of  two because 
of inbreeding.  The major one is that  the effective rate 
of rate of recombination is decreased because of de- 
creased heterozygosity. This latter effect is by far  the 
more  important  one, because it drastically increases the 
fraction of the  genome indirectly affected through link- 
age to selected sites. If purifymg selection is acting, 
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either in the  form of  selective  sweeps (IMAYNARD SMITH 
and HAIGH 1974; -LAN et al. 1989),  or in  the  form 
of background selection (CHARLESWORTH et al. 1993), 
levels  of  variability may  easily be  reduced by several 
orders of magnitude, dwarfing the twofold reduction 
due  to  inbreeding (CHARLESWORTH et al. 1993; NORD- 
BORG et al. 1996b). Similarly, if selection acts to maintain 
a given polymorphism in  a selfing species, a  much 
larger  region of the  genome will be affected, a  point 
to which we  will now turn. 

Detecting  selection: The action of balancing selec- 
tion may be  detected because it leads to a peak of  vari- 
ability surrounding  the selected site (KREITMAN and 
AGUADE 1986; HUDSON and 1988; KAPLAN et al. 
1988).  The results of this article suggest three situations 
when such  a  peak may be easier to detect. First, selfing 
will increase the size  of the region affected. Second, 
any background selection should  decrease  the variabil- 
ity  within each allelic class, making the peak much  more 
apparent. This may be especially relevant in a selfing 
population where the effect of background selection is 
expected to be considerable (NORDBORG et al. 1996b). 
Third, if a  balanced polymorphism is maintained by 
local adaptation ( i e . ,  in a  cline),  the peak will also be 
much wider. Under  the right  conditions, it may even 
be possible to scan the  genome directly for such poly- 
morphisms. 

Apparent  subpopulation  differentiation: The pres- 
ent results also  show that  population subdivision may be 
severely overestimated under some conditions. Because 
both selfing and background selection decrease coales- 
cence times within subpopulations, they will inflate FST 
values. This is, of course, consistent with the notion  that 
Fyr depends  on Npm, but it nonetheless implies that it 
is impossible to draw conclusions about isolation from 
this statistic. If, for  example,  background selection or 
selective  sweeps were to reduce variability by a factor of 
100, Fs7. would behave as  if the migration rate was one- 
hundredth of  its actual value. 

Another  concern is linkage to polymorphisms main- 
tained by local adaptation in a cline. As shown by (67), 
Fyr values will be extremely inflated in  a region sur- 
rounding such loci, and, especially for organisms with 
a high natural  rate of self-fertilization, this region may 
be quite wide. Indeed, very high Fyrvalues and extensive 
allozyme linkage disequilibria have often  been  found 
in highly selfing plants (e.&, HAMRICK and GODT 1990 
and  other contributions  in  the same volume).  The re- 
sults presented here suggest a simple interpretation  for 
these observations. 
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APPENDIX 

Coalescence  times with conservative  migration: If 
(12) holds, the  expected coalescence times (9) become 

Eq(2 ,  O)] = 1 + (C1 - c2)c2 
1 + B l 2 C 1  + B 2 1 Q  ’ 

Eq(1 ,   l ) ]  = 1 + 1 
4 2  + B 2 1  ’ 

(TAKAHATA 1988; TAJIMA 1989a; HEY 1991; NOTOHARA 
1993a; HERBOTS 1994). Note that  the  expected coales- 
cence times for samples from within a  subpopulation 
( i e . ,  Eq(2 ,  0)] and ET[(O, 2)])  are affected by subdivi- 
sion except when the  subpopulation sizes are equal 
(HERBOTS 1994), but  that clETl(2, O ) ]  + +ET[(O, 2)]  = 
1, in agreement with  classical results (MARWAMA 19’77). 

Coalescence  times with balancing  selection: The ex- 
pected coalescence times (9) become 

Eq(2,O)l = 1 + (P - q)4 
1 + 2pqR ’ 

ETl(1, l)] = 1 + - 1 
R’ 

ET[(O, 2)1 = 1 + ( 4  - P)P 
1 + 2pqR ’ (A3) 

and (lo),  

(HUDSON and KAPLAN 1988; KAPLAN et al. 1988; HEY 

Coalescence  times with balancing  selection  and mi- 
gration: Because  of the high degree of symmetry in 
the absence of local adaptation, it is easy to find the 
expectations by the usual method of conditioning on 
the first event. We obtain E q ( 2 ,  0,  0, O ) ]  = E q ( 0 ,  2, 
0,  O)] = E q ( 0 ,  0,  2, 0)l = ETl(0,  0 ,  0,  2)l  = 1, and 

ETl(1, 1, 0,  0)l = ET[((), 0 ,  1, 1)1 

1991). 

1  1 
R 2 M + R ’  

= 1 + - + -  

Eq(1 ,  0,  1, O ) ]  = E n ( 0 ,  1, 0,  1)l 
1  1 

= 1 + - + -  
2M 2 M + R ’  

1 1  
= 1 + - + - .  (A5) 

2M R and (10) can be written 


